PRACTICE MIDTERM 1 (BORCHERDS) - ANSWER KEY

PEYAM RYAN TABRIZIAN

(1) $[0,2]$
(2) Looks like the graph of $x^{2}-2 x=(x-1)^{2}-1$, except you flip it across the y-axis on the interval $[0,2]$.
(3) $f^{-1}(x)=\sqrt[3]{\ln (x-1)}$
(4) See me in office hours if you don't know how to do this! (it'll be easier to draw the picture for you)
(5) $\frac{3}{2}$
(6) $\frac{\epsilon}{5}=\frac{0.01}{5}=0.002$
(7) Discontinuous at 3 (but continuous at 1)
(8) $\frac{(3)(4)}{(1)(2)}=6$
(9) $\frac{f(x)-f(3)}{x-3} ; \lim _{x \rightarrow 3} \frac{f(x)-f(3)}{x-3}$
(10) $1 ; y=x+1$
(11) Differentiable everywhere! $f^{\prime}(x)=3 x^{2}$ when $x>0,0$ when $x=0,-3 x^{2}$ when $x<0$
(12) $y^{\prime}=e^{x+1}+\frac{1}{2 \sqrt{x}}-\frac{1}{2} x^{-\frac{3}{2}}$
(13) $\ln (3)$
(14) $e^{x}\left(x^{\frac{3}{2}}+\frac{3}{2} \sqrt{x}+x+1\right)$
(15) $\frac{2 x+3}{\left(1+\frac{1}{x}\right)^{2}}$

